Sivujen muokkaaminen vaatii nykyään kirjautumisen. Jos sinulla ei vielä ole tunnuksia, luo sellaiset.
Ero sivun ”Käyttäjä:Petrus Asikainen” versioiden välillä
p (→Joukkoliikenteen aikataulusääntö: hienosäätö) |
p (ajan tasalle) |
||
Rivi 1: | Rivi 1: | ||
− | '''Vuonna 2014 aloittanut [[matikisti]] ( | + | '''Vuonna 2014 aloittanut [[matikisti]] (valmistui 2017), joka harrastaa [[ohjelmointi]]a sekä [[code golf]]ia.''' __NOTOC__ |
Toimii Primaykin adminina ja vastaa [[Tapahtumat]]-systeemin ylläpidosta. | Toimii Primaykin adminina ja vastaa [[Tapahtumat]]-systeemin ylläpidosta. | ||
− | Jos on asiaa, tule [[Keskustelu käyttäjästä:Petrus Asikainen|keskustelusivulle]] tai lähetä [irc://irc1.inet.fi/ IRCNetissä] viestiä | + | Jos on asiaa, tule [[Keskustelu käyttäjästä:Petrus Asikainen|keskustelusivulle]] tai lähetä [irc://irc1.inet.fi/ IRCNetissä] viestiä PurkkaKoodarille (paikalla (liian) harvoin). |
{{Sitaatti|Sanoiko joku täällä syöys?}} | {{Sitaatti|Sanoiko joku täällä syöys?}} |
Versio 7. heinäkuuta 2017 kello 00.55
Vuonna 2014 aloittanut matikisti (valmistui 2017), joka harrastaa ohjelmointia sekä code golfia.
Toimii Primaykin adminina ja vastaa Tapahtumat-systeemin ylläpidosta.
Jos on asiaa, tule keskustelusivulle tai lähetä IRCNetissä viestiä PurkkaKoodarille (paikalla (liian) harvoin).
»Sanoiko joku täällä syöys?»
Kaavoja
Joukkoliikenteen aikataulusääntö
Olkoon $ K_0 $ kaikkien kulkuvälineiden joukko, ja $ HSL \subset K_0, VR \subset K $ kyseisten toimijoiden kulkuvälineiden joukot.
$ \forall k \in K_0 : k \in HSL \cup VR \implies \operatorname{P}(\operatorname{saapumisaika}(k) \leq \operatorname{aikataulun\space aika}(k)) = 0 $
Joukkoliikenteellä ehtimisen sääntö
Olkoon $ M $ kaikkien matkojen joukko ja $ K(m) \subseteq K_0 $ jonkin matkan $ m \in M $ kulkemiseen tarvittavien kulkuvälineiden joukko.
$ \forall m \in M : K(M) \cap (HSL \cup VR) \neq \empty \implies \operatorname{P}(\operatorname{saapumisaika}(m) \leq \operatorname{sovittu\space aika}(m)) = 0 $
Todistus. Tunnetusti
$ \operatorname{P}(saapumisaika \leq sovittu\space aika) = \displaystyle\prod_{k \in K(m)} \operatorname{P}(\operatorname{saapumisaika}(k) \leq \operatorname{aikataulun\space aika}(k)) $
Edellisen säännön perusteella
$ K(m) \cap (HSL \cup VR) \neq \empty $
$ \iff \exist k \in K(m) : k \in (HSL \cup VR) $
$ \implies \exist k \in K(m) : \operatorname{P}(\operatorname{saapumisaika}(k) \leq \operatorname{aikataulun\space aika}(k)) = 0 $
$ \iff \operatorname{P}(\operatorname{saapumisaika}(m) \leq \operatorname{sovittu\space aika}(m)) = \displaystyle\prod_{k \in K(m)} \operatorname{P}(\operatorname{saapumisaika}(k) \leq \operatorname{aikataulun\space aika}(k)) = 0 \;_\square $
Purkan minimikaava
$ \operatorname{purkka}(rajapinta) + \operatorname{purkka}(toteutus) \ge \mathscr{P} $
missä $ \operatorname{purkka}(x) $ on purkan määrä $ x $:ssä ja $ \mathscr{P} $ on universaali purkkavakio.
Code golfin peruskaava
$ \forall K \in \operatorname{kielet}, O \in \operatorname{ongelmat}, R \in \operatorname{ohjelmat}_K(O) \space \exists R^\prime \in \operatorname{ohjelmat}_K(O) : \operatorname{len}(R^\prime) < \operatorname{len}(R) $
Järjen peruskaava
$ \lim_{x \to \infty} f(x) = 0 $
missä $ x $ on ihmisjoukon koko ja $ f(x) $ on ihmisjoukon järjen määrä.