Sivujen muokkaaminen vaatii nykyään kirjautumisen. Jos sinulla ei vielä ole tunnuksia, luo sellaiset.
Käyttäjä:Petrus Asikainen/Juhan polynomi
Juha teki Päivölässä hienon polynomin. Pitihän se korottaa kuudenteen potenssiin. Alkuperäisen polynomin etsiminen jääköön kotitehtäväksi.
64a30b12c12 + 384a29b13c12 + 384a29b12c13 + 1344a28b14c12 + 1920a28b13c13 + 1344a28b12c14 + 3584a27b15c12 + 6144a27b14c13 + 6144a27b13c14 + 3584a27b12c15 + 1152a27b12c12 + 7680a26b16c12 + 15360a26b15c13 + 19200a26b14c14 + 15360a26b13c15 + 5760a26b13c12 + 7680a26b12c16 + 5760a26b12c13 + 13824a25b17c12 + 30720a25b16c13 + 46080a25b15c14 + 46080a25b14c15 + 17280a25b14c12 + 30720a25b13c16 + 23040a25b13c13 + 13824a25b12c17 + 17280a25b12c14 + 21504a24b18c12 + 52224a24b17c13 + 88320a24b16c14 + 104960a24b15c15 + 40320a24b15c12 + 88320a24b14c16 + 63360a24b14c13 + 52224a24b13c17 + 63360a24b13c14 + 21504a24b12c18 + 40320a24b12c15 + 8640a24b12c12 + 29184a23b19c12 + 76800a23b18c13 + 144384a23b17c14 + 192000a23b16c15 + 74880a23b16c12 + 192000a23b15c16 + 138240a23b15c13 + 144384a23b14c17 + 172800a23b14c14 + 76800a23b13c18 + 138240a23b13c15 + 34560a23b13c12 + 29184a23b12c19 + 74880a23b12c16 + 34560a23b12c13 + 34944a22b20c12 + 98304a22b19c13 + 201984a22b18c14 + 297984a22b17c15 + 116352a22b17c12 + 334080a22b16c16 + 236160a22b16c13 + 297984a22b15c17 + 357120a22b15c14 + 201984a22b14c18 + 357120a22b14c15 + 86400a22b14c12 + 98304a22b13c19 + 236160a22b13c16 + 103680a22b13c13 + 34944a22b12c20 + 116352a22b12c17 + 86400a22b12c14 + 37120a21b21c12 + 111360a21b20c13 + 245760a21b19c14 + 394240a21b18c15 + 155520a21b18c12 + 491520a21b17c16 + 345600a21b17c13 + 491520a21b16c17 + 581760a21b16c14 + 394240a21b15c18 + 691200a21b15c15 + 172800a21b15c12 + 245760a21b14c19 + 581760a21b14c16 + 241920a21b14c13 + 111360a21b13c20 + 345600a21b13c17 + 241920a21b13c14 + 37120a21b12c21 + 155520a21b12c18 + 172800a21b12c15 + 34560a21b12c12 + 34944a20b22c12 + 111360a20b21c13 + 263040a20b20c14 + 453120a20b19c15 + 178560a20b19c12 + 614400a20b18c16 + 432000a20b18c13 + 683520a20b17c17 + 812160a20b17c14 + 614400a20b16c18 + 1065600a20b16c15 + 267840a20b16c12 + 453120a20b15c19 + 1065600a20b15c16 + 449280a20b15c13 + 263040a20b14c20 + 812160a20b14c17 + 570240a20b14c14 + 111360a20b13c21 + 432000a20b13c18 + 449280a20b13c15 + 103680a20b13c12 + 34944a20b12c22 + 178560a20b12c19 + 267840a20b12c16 + 103680a20b12c13 + 29184a19b23c12 + 98304a19b22c13 + 245760a19b21c14 + 453120a19b20c15 + 178560a19b20c12 + 660480a19b19c16 + 460800a19b19c13 + 798720a19b18c17 + 944640a19b18c14 + 798720a19b17c18 + 1382400a19b17c15 + 345600a19b17c12 + 660480a19b16c19 + 1532160a19b16c16 + 622080a19b16c13 + 453120a19b15c20 + 1382400a19b15c17 + 967680a19b15c14 + 245760a19b14c21 + 944640a19b14c18 + 967680a19b14c15 + 207360a19b14c12 + 98304a19b13c22 + 460800a19b13c19 + 622080a19b13c16 + 207360a19b13c13 + 29184a19b12c23 + 178560a19b12c20 + 345600a19b12c17 + 207360a19b12c14 + 21504a18b24c12 + 76800a18b23c13 + 201984a18b22c14 + 394240a18b21c15 + 155520a18b21c12 + 614400a18b20c16 + 432000a18b20c13 + 798720a18b19c17 + 944640a18b19c14 + 867840a18b18c18 + 1497600a18b18c15 + 380160a18b18c12 + 798720a18b17c19 + 1854720a18b17c16 + 760320a18b17c13 + 614400a18b16c20 + 1854720a18b16c17 + 1278720a18b16c14 + 394240a18b15c21 + 1497600a18b15c18 + 1520640a18b15c15 + 345600a18b15c12 + 201984a18b14c22 + 944640a18b14c19 + 1278720a18b14c16 + 414720a18b14c13 + 76800a18b13c23 + 432000a18b13c20 + 760320a18b13c17 + 414720a18b13c14 + 21504a18b12c24 + 155520a18b12c21 + 380160a18b12c18 + 345600a18b12c15 + 77760a18b12c12 + 13824a17b25c12 + 52224a17b24c13 + 144384a17b23c14 + 297984a17b22c15 + 116352a17b22c12 + 491520a17b21c16 + 345600a17b21c13 + 683520a17b20c17 + 812160a17b20c14 + 798720a17b19c18 + 1382400a17b19c15 + 345600a17b19c12 + 798720a17b18c19 + 1854720a17b18c16 + 760320a17b18c13 + 683520a17b17c20 + 2073600a17b17c17 + 1451520a17b17c14 + 491520a17b16c21 + 1854720a17b16c18 + 1866240a17b16c15 + 414720a17b16c12 + 297984a17b15c22 + 1382400a17b15c19 + 1866240a17b15c16 + 622080a17b15c13 + 144384a17b14c23 + 812160a17b14c20 + 1451520a17b14c17 + 829440a17b14c14 + 52224a17b13c24 + 345600a17b13c21 + 760320a17b13c18 + 622080a17b13c15 + 155520a17b13c12 + 13824a17b12c25 + 116352a17b12c22 + 345600a17b12c19 + 414720a17b12c16 + 155520a17b12c13 + 7680a16b26c12 + 30720a16b25c13 + 88320a16b24c14 + 192000a16b23c15 + 74880a16b23c12 + 334080a16b22c16 + 236160a16b22c13 + 491520a16b21c17 + 581760a16b21c14 + 614400a16b20c18 + 1065600a16b20c15 + 267840a16b20c12 + 660480a16b19c19 + 1532160a16b19c16 + 622080a16b19c13 + 614400a16b18c20 + 1854720a16b18c17 + 1278720a16b18c14 + 491520a16b17c21 + 1854720a16b17c18 + 1866240a16b17c15 + 414720a16b17c12 + 334080a16b16c22 + 1532160a16b16c19 + 2021760a16b16c16 + 622080a16b16c13 + 192000a16b15c23 + 1065600a16b15c20 + 1866240a16b15c17 + 1036800a16b15c14 + 88320a16b14c24 + 581760a16b14c21 + 1278720a16b14c18 + 1036800a16b14c15 + 233280a16b14c12 + 30720a16b13c25 + 236160a16b13c22 + 622080a16b13c19 + 622080a16b13c16 + 155520a16b13c13 + 7680a16b12c26 + 74880a16b12c23 + 267840a16b12c20 + 414720a16b12c17 + 233280a16b12c14 + 3584a15b27c12 + 15360a15b26c13 + 46080a15b25c14 + 104960a15b24c15 + 40320a15b24c12 + 192000a15b23c16 + 138240a15b23c13 + 297984a15b22c17 + 357120a15b22c14 + 394240a15b21c18 + 691200a15b21c15 + 172800a15b21c12 + 453120a15b20c19 + 1065600a15b20c16 + 449280a15b20c13 + 453120a15b19c20 + 1382400a15b19c17 + 967680a15b19c14 + 394240a15b18c21 + 1497600a15b18c18 + 1520640a15b18c15 + 345600a15b18c12 + 297984a15b17c22 + 1382400a15b17c19 + 1866240a15b17c16 + 622080a15b17c13 + 192000a15b16c23 + 1065600a15b16c20 + 1866240a15b16c17 + 1036800a15b16c14 + 104960a15b15c24 + 691200a15b15c21 + 1520640a15b15c18 + 1244160a15b15c15 + 311040a15b15c12 + 46080a15b14c25 + 357120a15b14c22 + 967680a15b14c19 + 1036800a15b14c16 + 311040a15b14c13 + 15360a15b13c26 + 138240a15b13c23 + 449280a15b13c20 + 622080a15b13c17 + 311040a15b13c14 + 3584a15b12c27 + 40320a15b12c24 + 172800a15b12c21 + 345600a15b12c18 + 311040a15b12c15 + 93312a15b12c12 + 1344a14b28c12 + 6144a14b27c13 + 19200a14b26c14 + 46080a14b25c15 + 17280a14b25c12 + 88320a14b24c16 + 63360a14b24c13 + 144384a14b23c17 + 172800a14b23c14 + 201984a14b22c18 + 357120a14b22c15 + 86400a14b22c12 + 245760a14b21c19 + 581760a14b21c16 + 241920a14b21c13 + 263040a14b20c20 + 812160a14b20c17 + 570240a14b20c14 + 245760a14b19c21 + 944640a14b19c18 + 967680a14b19c15 + 207360a14b19c12 + 201984a14b18c22 + 944640a14b18c19 + 1278720a14b18c16 + 414720a14b18c13 + 144384a14b17c23 + 812160a14b17c20 + 1451520a14b17c17 + 829440a14b17c14 + 88320a14b16c24 + 581760a14b16c21 + 1278720a14b16c18 + 1036800a14b16c15 + 233280a14b16c12 + 46080a14b15c25 + 357120a14b15c22 + 967680a14b15c19 + 1036800a14b15c16 + 311040a14b15c13 + 19200a14b14c26 + 172800a14b14c23 + 570240a14b14c20 + 829440a14b14c17 + 466560a14b14c14 + 6144a14b13c27 + 63360a14b13c24 + 241920a14b13c21 + 414720a14b13c18 + 311040a14b13c15 + 93312a14b13c12 + 1344a14b12c28 + 17280a14b12c25 + 86400a14b12c22 + 207360a14b12c19 + 233280a14b12c16 + 93312a14b12c13 + 384a13b29c12 + 1920a13b28c13 + 6144a13b27c14 + 15360a13b26c15 + 5760a13b26c12 + 30720a13b25c16 + 23040a13b25c13 + 52224a13b24c17 + 63360a13b24c14 + 76800a13b23c18 + 138240a13b23c15 + 34560a13b23c12 + 98304a13b22c19 + 236160a13b22c16 + 103680a13b22c13 + 111360a13b21c20 + 345600a13b21c17 + 241920a13b21c14 + 111360a13b20c21 + 432000a13b20c18 + 449280a13b20c15 + 103680a13b20c12 + 98304a13b19c22 + 460800a13b19c19 + 622080a13b19c16 + 207360a13b19c13 + 76800a13b18c23 + 432000a13b18c20 + 760320a13b18c17 + 414720a13b18c14 + 52224a13b17c24 + 345600a13b17c21 + 760320a13b17c18 + 622080a13b17c15 + 155520a13b17c12 + 30720a13b16c25 + 236160a13b16c22 + 622080a13b16c19 + 622080a13b16c16 + 155520a13b16c13 + 15360a13b15c26 + 138240a13b15c23 + 449280a13b15c20 + 622080a13b15c17 + 311040a13b15c14 + 6144a13b14c27 + 63360a13b14c24 + 241920a13b14c21 + 414720a13b14c18 + 311040a13b14c15 + 93312a13b14c12 + 1920a13b13c28 + 23040a13b13c25 + 103680a13b13c22 + 207360a13b13c19 + 155520a13b13c16 + 384a13b12c29 + 5760a13b12c26 + 34560a13b12c23 + 103680a13b12c20 + 155520a13b12c17 + 93312a13b12c14 + 64a12b30c12 + 384a12b29c13 + 1344a12b28c14 + 3584a12b27c15 + 1152a12b27c12 + 7680a12b26c16 + 5760a12b26c13 + 13824a12b25c17 + 17280a12b25c14 + 21504a12b24c18 + 40320a12b24c15 + 8640a12b24c12 + 29184a12b23c19 + 74880a12b23c16 + 34560a12b23c13 + 34944a12b22c20 + 116352a12b22c17 + 86400a12b22c14 + 37120a12b21c21 + 155520a12b21c18 + 172800a12b21c15 + 34560a12b21c12 + 34944a12b20c22 + 178560a12b20c19 + 267840a12b20c16 + 103680a12b20c13 + 29184a12b19c23 + 178560a12b19c20 + 345600a12b19c17 + 207360a12b19c14 + 21504a12b18c24 + 155520a12b18c21 + 380160a12b18c18 + 345600a12b18c15 + 77760a12b18c12 + 13824a12b17c25 + 116352a12b17c22 + 345600a12b17c19 + 414720a12b17c16 + 155520a12b17c13 + 7680a12b16c26 + 74880a12b16c23 + 267840a12b16c20 + 414720a12b16c17 + 233280a12b16c14 + 3584a12b15c27 + 40320a12b15c24 + 172800a12b15c21 + 345600a12b15c18 + 311040a12b15c15 + 93312a12b15c12 + 1344a12b14c28 + 17280a12b14c25 + 86400a12b14c22 + 207360a12b14c19 + 233280a12b14c16 + 93312a12b14c13 + 384a12b13c29 + 5760a12b13c26 + 34560a12b13c23 + 103680a12b13c20 + 155520a12b13c17 + 93312a12b13c14 + 64a12b12c30 + 1152a12b12c27 + 8640a12b12c24 + 34560a12b12c21 + 77760a12b12c18 + 93312a12b12c15 + 46656a12b12c12
Näkynee alla jos joskus saa renderöityä.
$ {64}{a^30}{b^12}{c^12}+{384}{a^29}{b^13}{c^12}+{384}{a^29}{b^12}{c^13}+{1344}{a^28}{b^14}{c^12}+{1920}{a^28}{b^13}{c^13}+{1344}{a^28}{b^12}{c^14}+{3584}{a^27}{b^15}{c^12}+{6144}{a^27}{b^14}{c^13}+{6144}{a^27}{b^13}{c^14}+{3584}{a^27}{b^12}{c^15}+{1152}{a^27}{b^12}{c^12}+{7680}{a^26}{b^16}{c^12}+{15360}{a^26}{b^15}{c^13}+{19200}{a^26}{b^14}{c^14}+{15360}{a^26}{b^13}{c^15}+{5760}{a^26}{b^13}{c^12}+{7680}{a^26}{b^12}{c^16}+{5760}{a^26}{b^12}{c^13}+{13824}{a^25}{b^17}{c^12}+{30720}{a^25}{b^16}{c^13}+{46080}{a^25}{b^15}{c^14}+{46080}{a^25}{b^14}{c^15}+{17280}{a^25}{b^14}{c^12}+{30720}{a^25}{b^13}{c^16}+{23040}{a^25}{b^13}{c^13}+{13824}{a^25}{b^12}{c^17}+{17280}{a^25}{b^12}{c^14}+{21504}{a^24}{b^18}{c^12}+{52224}{a^24}{b^17}{c^13}+{88320}{a^24}{b^16}{c^14}+{104960}{a^24}{b^15}{c^15}+{40320}{a^24}{b^15}{c^12}+{88320}{a^24}{b^14}{c^16}+{63360}{a^24}{b^14}{c^13}+{52224}{a^24}{b^13}{c^17}+{63360}{a^24}{b^13}{c^14}+{21504}{a^24}{b^12}{c^18}+{40320}{a^24}{b^12}{c^15}+{8640}{a^24}{b^12}{c^12}+{29184}{a^23}{b^19}{c^12}+{76800}{a^23}{b^18}{c^13}+{144384}{a^23}{b^17}{c^14}+{192000}{a^23}{b^16}{c^15}+{74880}{a^23}{b^16}{c^12}+{192000}{a^23}{b^15}{c^16}+{138240}{a^23}{b^15}{c^13}+{144384}{a^23}{b^14}{c^17}+{172800}{a^23}{b^14}{c^14}+{76800}{a^23}{b^13}{c^18}+{138240}{a^23}{b^13}{c^15}+{34560}{a^23}{b^13}{c^12}+{29184}{a^23}{b^12}{c^19}+{74880}{a^23}{b^12}{c^16}+{34560}{a^23}{b^12}{c^13}+{34944}{a^22}{b^20}{c^12}+{98304}{a^22}{b^19}{c^13}+{201984}{a^22}{b^18}{c^14}+{297984}{a^22}{b^17}{c^15}+{116352}{a^22}{b^17}{c^12}+{334080}{a^22}{b^16}{c^16}+{236160}{a^22}{b^16}{c^13}+{297984}{a^22}{b^15}{c^17}+{357120}{a^22}{b^15}{c^14}+{201984}{a^22}{b^14}{c^18}+{357120}{a^22}{b^14}{c^15}+{86400}{a^22}{b^14}{c^12}+{98304}{a^22}{b^13}{c^19}+{236160}{a^22}{b^13}{c^16}+{103680}{a^22}{b^13}{c^13}+{34944}{a^22}{b^12}{c^20}+{116352}{a^22}{b^12}{c^17}+{86400}{a^22}{b^12}{c^14}+{37120}{a^21}{b^21}{c^12}+{111360}{a^21}{b^20}{c^13}+{245760}{a^21}{b^19}{c^14}+{394240}{a^21}{b^18}{c^15}+{155520}{a^21}{b^18}{c^12}+{491520}{a^21}{b^17}{c^16}+{345600}{a^21}{b^17}{c^13}+{491520}{a^21}{b^16}{c^17}+{581760}{a^21}{b^16}{c^14}+{394240}{a^21}{b^15}{c^18}+{691200}{a^21}{b^15}{c^15}+{172800}{a^21}{b^15}{c^12}+{245760}{a^21}{b^14}{c^19}+{581760}{a^21}{b^14}{c^16}+{241920}{a^21}{b^14}{c^13}+{111360}{a^21}{b^13}{c^20}+{345600}{a^21}{b^13}{c^17}+{241920}{a^21}{b^13}{c^14}+{37120}{a^21}{b^12}{c^21}+{155520}{a^21}{b^12}{c^18}+{172800}{a^21}{b^12}{c^15}+{34560}{a^21}{b^12}{c^12}+{34944}{a^20}{b^22}{c^12}+{111360}{a^20}{b^21}{c^13}+{263040}{a^20}{b^20}{c^14}+{453120}{a^20}{b^19}{c^15}+{178560}{a^20}{b^19}{c^12}+{614400}{a^20}{b^18}{c^16}+{432000}{a^20}{b^18}{c^13}+{683520}{a^20}{b^17}{c^17}+{812160}{a^20}{b^17}{c^14}+{614400}{a^20}{b^16}{c^18}+{1065600}{a^20}{b^16}{c^15}+{267840}{a^20}{b^16}{c^12}+{453120}{a^20}{b^15}{c^19}+{1065600}{a^20}{b^15}{c^16}+{449280}{a^20}{b^15}{c^13}+{263040}{a^20}{b^14}{c^20}+{812160}{a^20}{b^14}{c^17}+{570240}{a^20}{b^14}{c^14}+{111360}{a^20}{b^13}{c^21}+{432000}{a^20}{b^13}{c^18}+{449280}{a^20}{b^13}{c^15}+{103680}{a^20}{b^13}{c^12}+{34944}{a^20}{b^12}{c^22}+{178560}{a^20}{b^12}{c^19}+{267840}{a^20}{b^12}{c^16}+{103680}{a^20}{b^12}{c^13}+{29184}{a^19}{b^23}{c^12}+{98304}{a^19}{b^22}{c^13}+{245760}{a^19}{b^21}{c^14}+{453120}{a^19}{b^20}{c^15}+{178560}{a^19}{b^20}{c^12}+{660480}{a^19}{b^19}{c^16}+{460800}{a^19}{b^19}{c^13}+{798720}{a^19}{b^18}{c^17}+{944640}{a^19}{b^18}{c^14}+{798720}{a^19}{b^17}{c^18}+{1382400}{a^19}{b^17}{c^15}+{345600}{a^19}{b^17}{c^12}+{660480}{a^19}{b^16}{c^19}+{1532160}{a^19}{b^16}{c^16}+{622080}{a^19}{b^16}{c^13}+{453120}{a^19}{b^15}{c^20}+{1382400}{a^19}{b^15}{c^17}+{967680}{a^19}{b^15}{c^14}+{245760}{a^19}{b^14}{c^21}+{944640}{a^19}{b^14}{c^18}+{967680}{a^19}{b^14}{c^15}+{207360}{a^19}{b^14}{c^12}+{98304}{a^19}{b^13}{c^22}+{460800}{a^19}{b^13}{c^19}+{622080}{a^19}{b^13}{c^16}+{207360}{a^19}{b^13}{c^13}+{29184}{a^19}{b^12}{c^23}+{178560}{a^19}{b^12}{c^20}+{345600}{a^19}{b^12}{c^17}+{207360}{a^19}{b^12}{c^14}+{21504}{a^18}{b^24}{c^12}+{76800}{a^18}{b^23}{c^13}+{201984}{a^18}{b^22}{c^14}+{394240}{a^18}{b^21}{c^15}+{155520}{a^18}{b^21}{c^12}+{614400}{a^18}{b^20}{c^16}+{432000}{a^18}{b^20}{c^13}+{798720}{a^18}{b^19}{c^17}+{944640}{a^18}{b^19}{c^14}+{867840}{a^18}{b^18}{c^18}+{1497600}{a^18}{b^18}{c^15}+{380160}{a^18}{b^18}{c^12}+{798720}{a^18}{b^17}{c^19}+{1854720}{a^18}{b^17}{c^16}+{760320}{a^18}{b^17}{c^13}+{614400}{a^18}{b^16}{c^20}+{1854720}{a^18}{b^16}{c^17}+{1278720}{a^18}{b^16}{c^14}+{394240}{a^18}{b^15}{c^21}+{1497600}{a^18}{b^15}{c^18}+{1520640}{a^18}{b^15}{c^15}+{345600}{a^18}{b^15}{c^12}+{201984}{a^18}{b^14}{c^22}+{944640}{a^18}{b^14}{c^19}+{1278720}{a^18}{b^14}{c^16}+{414720}{a^18}{b^14}{c^13}+{76800}{a^18}{b^13}{c^23}+{432000}{a^18}{b^13}{c^20}+{760320}{a^18}{b^13}{c^17}+{414720}{a^18}{b^13}{c^14}+{21504}{a^18}{b^12}{c^24}+{155520}{a^18}{b^12}{c^21}+{380160}{a^18}{b^12}{c^18}+{345600}{a^18}{b^12}{c^15}+{77760}{a^18}{b^12}{c^12}+{13824}{a^17}{b^25}{c^12}+{52224}{a^17}{b^24}{c^13}+{144384}{a^17}{b^23}{c^14}+{297984}{a^17}{b^22}{c^15}+{116352}{a^17}{b^22}{c^12}+{491520}{a^17}{b^21}{c^16}+{345600}{a^17}{b^21}{c^13}+{683520}{a^17}{b^20}{c^17}+{812160}{a^17}{b^20}{c^14}+{798720}{a^17}{b^19}{c^18}+{1382400}{a^17}{b^19}{c^15}+{345600}{a^17}{b^19}{c^12}+{798720}{a^17}{b^18}{c^19}+{1854720}{a^17}{b^18}{c^16}+{760320}{a^17}{b^18}{c^13}+{683520}{a^17}{b^17}{c^20}+{2073600}{a^17}{b^17}{c^17}+{1451520}{a^17}{b^17}{c^14}+{491520}{a^17}{b^16}{c^21}+{1854720}{a^17}{b^16}{c^18}+{1866240}{a^17}{b^16}{c^15}+{414720}{a^17}{b^16}{c^12}+{297984}{a^17}{b^15}{c^22}+{1382400}{a^17}{b^15}{c^19}+{1866240}{a^17}{b^15}{c^16}+{622080}{a^17}{b^15}{c^13}+{144384}{a^17}{b^14}{c^23}+{812160}{a^17}{b^14}{c^20}+{1451520}{a^17}{b^14}{c^17}+{829440}{a^17}{b^14}{c^14}+{52224}{a^17}{b^13}{c^24}+{345600}{a^17}{b^13}{c^21}+{760320}{a^17}{b^13}{c^18}+{622080}{a^17}{b^13}{c^15}+{155520}{a^17}{b^13}{c^12}+{13824}{a^17}{b^12}{c^25}+{116352}{a^17}{b^12}{c^22}+{345600}{a^17}{b^12}{c^19}+{414720}{a^17}{b^12}{c^16}+{155520}{a^17}{b^12}{c^13}+{7680}{a^16}{b^26}{c^12}+{30720}{a^16}{b^25}{c^13}+{88320}{a^16}{b^24}{c^14}+{192000}{a^16}{b^23}{c^15}+{74880}{a^16}{b^23}{c^12}+{334080}{a^16}{b^22}{c^16}+{236160}{a^16}{b^22}{c^13}+{491520}{a^16}{b^21}{c^17}+{581760}{a^16}{b^21}{c^14}+{614400}{a^16}{b^20}{c^18}+{1065600}{a^16}{b^20}{c^15}+{267840}{a^16}{b^20}{c^12}+{660480}{a^16}{b^19}{c^19}+{1532160}{a^16}{b^19}{c^16}+{622080}{a^16}{b^19}{c^13}+{614400}{a^16}{b^18}{c^20}+{1854720}{a^16}{b^18}{c^17}+{1278720}{a^16}{b^18}{c^14}+{491520}{a^16}{b^17}{c^21}+{1854720}{a^16}{b^17}{c^18}+{1866240}{a^16}{b^17}{c^15}+{414720}{a^16}{b^17}{c^12}+{334080}{a^16}{b^16}{c^22}+{1532160}{a^16}{b^16}{c^19}+{2021760}{a^16}{b^16}{c^16}+{622080}{a^16}{b^16}{c^13}+{192000}{a^16}{b^15}{c^23}+{1065600}{a^16}{b^15}{c^20}+{1866240}{a^16}{b^15}{c^17}+{1036800}{a^16}{b^15}{c^14}+{88320}{a^16}{b^14}{c^24}+{581760}{a^16}{b^14}{c^21}+{1278720}{a^16}{b^14}{c^18}+{1036800}{a^16}{b^14}{c^15}+{233280}{a^16}{b^14}{c^12}+{30720}{a^16}{b^13}{c^25}+{236160}{a^16}{b^13}{c^22}+{622080}{a^16}{b^13}{c^19}+{622080}{a^16}{b^13}{c^16}+{155520}{a^16}{b^13}{c^13}+{7680}{a^16}{b^12}{c^26}+{74880}{a^16}{b^12}{c^23}+{267840}{a^16}{b^12}{c^20}+{414720}{a^16}{b^12}{c^17}+{233280}{a^16}{b^12}{c^14}+{3584}{a^15}{b^27}{c^12}+{15360}{a^15}{b^26}{c^13}+{46080}{a^15}{b^25}{c^14}+{104960}{a^15}{b^24}{c^15}+{40320}{a^15}{b^24}{c^12}+{192000}{a^15}{b^23}{c^16}+{138240}{a^15}{b^23}{c^13}+{297984}{a^15}{b^22}{c^17}+{357120}{a^15}{b^22}{c^14}+{394240}{a^15}{b^21}{c^18}+{691200}{a^15}{b^21}{c^15}+{172800}{a^15}{b^21}{c^12}+{453120}{a^15}{b^20}{c^19}+{1065600}{a^15}{b^20}{c^16}+{449280}{a^15}{b^20}{c^13}+{453120}{a^15}{b^19}{c^20}+{1382400}{a^15}{b^19}{c^17}+{967680}{a^15}{b^19}{c^14}+{394240}{a^15}{b^18}{c^21}+{1497600}{a^15}{b^18}{c^18}+{1520640}{a^15}{b^18}{c^15}+{345600}{a^15}{b^18}{c^12}+{297984}{a^15}{b^17}{c^22}+{1382400}{a^15}{b^17}{c^19}+{1866240}{a^15}{b^17}{c^16}+{622080}{a^15}{b^17}{c^13}+{192000}{a^15}{b^16}{c^23}+{1065600}{a^15}{b^16}{c^20}+{1866240}{a^15}{b^16}{c^17}+{1036800}{a^15}{b^16}{c^14}+{104960}{a^15}{b^15}{c^24}+{691200}{a^15}{b^15}{c^21}+{1520640}{a^15}{b^15}{c^18}+{1244160}{a^15}{b^15}{c^15}+{311040}{a^15}{b^15}{c^12}+{46080}{a^15}{b^14}{c^25}+{357120}{a^15}{b^14}{c^22}+{967680}{a^15}{b^14}{c^19}+{1036800}{a^15}{b^14}{c^16}+{311040}{a^15}{b^14}{c^13}+{15360}{a^15}{b^13}{c^26}+{138240}{a^15}{b^13}{c^23}+{449280}{a^15}{b^13}{c^20}+{622080}{a^15}{b^13}{c^17}+{311040}{a^15}{b^13}{c^14}+{3584}{a^15}{b^12}{c^27}+{40320}{a^15}{b^12}{c^24}+{172800}{a^15}{b^12}{c^21}+{345600}{a^15}{b^12}{c^18}+{311040}{a^15}{b^12}{c^15}+{93312}{a^15}{b^12}{c^12}+{1344}{a^14}{b^28}{c^12}+{6144}{a^14}{b^27}{c^13}+{19200}{a^14}{b^26}{c^14}+{46080}{a^14}{b^25}{c^15}+{17280}{a^14}{b^25}{c^12}+{88320}{a^14}{b^24}{c^16}+{63360}{a^14}{b^24}{c^13}+{144384}{a^14}{b^23}{c^17}+{172800}{a^14}{b^23}{c^14}+{201984}{a^14}{b^22}{c^18}+{357120}{a^14}{b^22}{c^15}+{86400}{a^14}{b^22}{c^12}+{245760}{a^14}{b^21}{c^19}+{581760}{a^14}{b^21}{c^16}+{241920}{a^14}{b^21}{c^13}+{263040}{a^14}{b^20}{c^20}+{812160}{a^14}{b^20}{c^17}+{570240}{a^14}{b^20}{c^14}+{245760}{a^14}{b^19}{c^21}+{944640}{a^14}{b^19}{c^18}+{967680}{a^14}{b^19}{c^15}+{207360}{a^14}{b^19}{c^12}+{201984}{a^14}{b^18}{c^22}+{944640}{a^14}{b^18}{c^19}+{1278720}{a^14}{b^18}{c^16}+{414720}{a^14}{b^18}{c^13}+{144384}{a^14}{b^17}{c^23}+{812160}{a^14}{b^17}{c^20}+{1451520}{a^14}{b^17}{c^17}+{829440}{a^14}{b^17}{c^14}+{88320}{a^14}{b^16}{c^24}+{581760}{a^14}{b^16}{c^21}+{1278720}{a^14}{b^16}{c^18}+{1036800}{a^14}{b^16}{c^15}+{233280}{a^14}{b^16}{c^12}+{46080}{a^14}{b^15}{c^25}+{357120}{a^14}{b^15}{c^22}+{967680}{a^14}{b^15}{c^19}+{1036800}{a^14}{b^15}{c^16}+{311040}{a^14}{b^15}{c^13}+{19200}{a^14}{b^14}{c^26}+{172800}{a^14}{b^14}{c^23}+{570240}{a^14}{b^14}{c^20}+{829440}{a^14}{b^14}{c^17}+{466560}{a^14}{b^14}{c^14}+{6144}{a^14}{b^13}{c^27}+{63360}{a^14}{b^13}{c^24}+{241920}{a^14}{b^13}{c^21}+{414720}{a^14}{b^13}{c^18}+{311040}{a^14}{b^13}{c^15}+{93312}{a^14}{b^13}{c^12}+{1344}{a^14}{b^12}{c^28}+{17280}{a^14}{b^12}{c^25}+{86400}{a^14}{b^12}{c^22}+{207360}{a^14}{b^12}{c^19}+{233280}{a^14}{b^12}{c^16}+{93312}{a^14}{b^12}{c^13}+{384}{a^13}{b^29}{c^12}+{1920}{a^13}{b^28}{c^13}+{6144}{a^13}{b^27}{c^14}+{15360}{a^13}{b^26}{c^15}+{5760}{a^13}{b^26}{c^12}+{30720}{a^13}{b^25}{c^16}+{23040}{a^13}{b^25}{c^13}+{52224}{a^13}{b^24}{c^17}+{63360}{a^13}{b^24}{c^14}+{76800}{a^13}{b^23}{c^18}+{138240}{a^13}{b^23}{c^15}+{34560}{a^13}{b^23}{c^12}+{98304}{a^13}{b^22}{c^19}+{236160}{a^13}{b^22}{c^16}+{103680}{a^13}{b^22}{c^13}+{111360}{a^13}{b^21}{c^20}+{345600}{a^13}{b^21}{c^17}+{241920}{a^13}{b^21}{c^14}+{111360}{a^13}{b^20}{c^21}+{432000}{a^13}{b^20}{c^18}+{449280}{a^13}{b^20}{c^15}+{103680}{a^13}{b^20}{c^12}+{98304}{a^13}{b^19}{c^22}+{460800}{a^13}{b^19}{c^19}+{622080}{a^13}{b^19}{c^16}+{207360}{a^13}{b^19}{c^13}+{76800}{a^13}{b^18}{c^23}+{432000}{a^13}{b^18}{c^20}+{760320}{a^13}{b^18}{c^17}+{414720}{a^13}{b^18}{c^14}+{52224}{a^13}{b^17}{c^24}+{345600}{a^13}{b^17}{c^21}+{760320}{a^13}{b^17}{c^18}+{622080}{a^13}{b^17}{c^15}+{155520}{a^13}{b^17}{c^12}+{30720}{a^13}{b^16}{c^25}+{236160}{a^13}{b^16}{c^22}+{622080}{a^13}{b^16}{c^19}+{622080}{a^13}{b^16}{c^16}+{155520}{a^13}{b^16}{c^13}+{15360}{a^13}{b^15}{c^26}+{138240}{a^13}{b^15}{c^23}+{449280}{a^13}{b^15}{c^20}+{622080}{a^13}{b^15}{c^17}+{311040}{a^13}{b^15}{c^14}+{6144}{a^13}{b^14}{c^27}+{63360}{a^13}{b^14}{c^24}+{241920}{a^13}{b^14}{c^21}+{414720}{a^13}{b^14}{c^18}+{311040}{a^13}{b^14}{c^15}+{93312}{a^13}{b^14}{c^12}+{1920}{a^13}{b^13}{c^28}+{23040}{a^13}{b^13}{c^25}+{103680}{a^13}{b^13}{c^22}+{207360}{a^13}{b^13}{c^19}+{155520}{a^13}{b^13}{c^16}+{384}{a^13}{b^12}{c^29}+{5760}{a^13}{b^12}{c^26}+{34560}{a^13}{b^12}{c^23}+{103680}{a^13}{b^12}{c^20}+{155520}{a^13}{b^12}{c^17}+{93312}{a^13}{b^12}{c^14}+{64}{a^12}{b^30}{c^12}+{384}{a^12}{b^29}{c^13}+{1344}{a^12}{b^28}{c^14}+{3584}{a^12}{b^27}{c^15}+{1152}{a^12}{b^27}{c^12}+{7680}{a^12}{b^26}{c^16}+{5760}{a^12}{b^26}{c^13}+{13824}{a^12}{b^25}{c^17}+{17280}{a^12}{b^25}{c^14}+{21504}{a^12}{b^24}{c^18}+{40320}{a^12}{b^24}{c^15}+{8640}{a^12}{b^24}{c^12}+{29184}{a^12}{b^23}{c^19}+{74880}{a^12}{b^23}{c^16}+{34560}{a^12}{b^23}{c^13}+{34944}{a^12}{b^22}{c^20}+{116352}{a^12}{b^22}{c^17}+{86400}{a^12}{b^22}{c^14}+{37120}{a^12}{b^21}{c^21}+{155520}{a^12}{b^21}{c^18}+{172800}{a^12}{b^21}{c^15}+{34560}{a^12}{b^21}{c^12}+{34944}{a^12}{b^20}{c^22}+{178560}{a^12}{b^20}{c^19}+{267840}{a^12}{b^20}{c^16}+{103680}{a^12}{b^20}{c^13}+{29184}{a^12}{b^19}{c^23}+{178560}{a^12}{b^19}{c^20}+{345600}{a^12}{b^19}{c^17}+{207360}{a^12}{b^19}{c^14}+{21504}{a^12}{b^18}{c^24}+{155520}{a^12}{b^18}{c^21}+{380160}{a^12}{b^18}{c^18}+{345600}{a^12}{b^18}{c^15}+{77760}{a^12}{b^18}{c^12}+{13824}{a^12}{b^17}{c^25}+{116352}{a^12}{b^17}{c^22}+{345600}{a^12}{b^17}{c^19}+{414720}{a^12}{b^17}{c^16}+{155520}{a^12}{b^17}{c^13}+{7680}{a^12}{b^16}{c^26}+{74880}{a^12}{b^16}{c^23}+{267840}{a^12}{b^16}{c^20}+{414720}{a^12}{b^16}{c^17}+{233280}{a^12}{b^16}{c^14}+{3584}{a^12}{b^15}{c^27}+{40320}{a^12}{b^15}{c^24}+{172800}{a^12}{b^15}{c^21}+{345600}{a^12}{b^15}{c^18}+{311040}{a^12}{b^15}{c^15}+{93312}{a^12}{b^15}{c^12}+{1344}{a^12}{b^14}{c^28}+{17280}{a^12}{b^14}{c^25}+{86400}{a^12}{b^14}{c^22}+{207360}{a^12}{b^14}{c^19}+{233280}{a^12}{b^14}{c^16}+{93312}{a^12}{b^14}{c^13}+{384}{a^12}{b^13}{c^29}+{5760}{a^12}{b^13}{c^26}+{34560}{a^12}{b^13}{c^23}+{103680}{a^12}{b^13}{c^20}+{155520}{a^12}{b^13}{c^17}+{93312}{a^12}{b^13}{c^14}+{64}{a^12}{b^12}{c^30}+{1152}{a^12}{b^12}{c^27}+{8640}{a^12}{b^12}{c^24}+{34560}{a^12}{b^12}{c^21}+{77760}{a^12}{b^12}{c^18}+{93312}{a^12}{b^12}{c^15}+{46656}{a^12}{b^12}{c^12} $