Sivujen muokkaaminen vaatii nykyään kirjautumisen. Jos sinulla ei vielä ole tunnuksia, luo sellaiset.

Käyttäjä:Petrus Asikainen/Juhan polynomi

Primayk
< Käyttäjä:Petrus Asikainen
Versio hetkellä 21. helmikuuta 2015 kello 20.42 – tehnyt Petrus Asikainen (keskustelu | muokkaukset)

Loikkaa: valikkoon, hakuun

Juha teki Päivölässä hienon polynomin. Pitihän se korottaa kuudenteen potenssiin. Alkuperäisen polynomin etsiminen jääköön kotitehtäväksi.

$ {64}{a^30}{b^12}{c^12}+{384}{a^29}{b^13}{c^12}+{384}{a^29}{b^12}{c^13}+{1344}{a^28}{b^14}{c^12}+{1920}{a^28}{b^13}{c^13}+{1344}{a^28}{b^12}{c^14}+{3584}{a^27}{b^15}{c^12}+{6144}{a^27}{b^14}{c^13}+{6144}{a^27}{b^13}{c^14}+{3584}{a^27}{b^12}{c^15}+{1152}{a^27}{b^12}{c^12}+{7680}{a^26}{b^16}{c^12}+{15360}{a^26}{b^15}{c^13}+{19200}{a^26}{b^14}{c^14}+{15360}{a^26}{b^13}{c^15}+{5760}{a^26}{b^13}{c^12}+{7680}{a^26}{b^12}{c^16}+{5760}{a^26}{b^12}{c^13}+{13824}{a^25}{b^17}{c^12}+{30720}{a^25}{b^16}{c^13}+{46080}{a^25}{b^15}{c^14}+{46080}{a^25}{b^14}{c^15}+{17280}{a^25}{b^14}{c^12}+{30720}{a^25}{b^13}{c^16}+{23040}{a^25}{b^13}{c^13}+{13824}{a^25}{b^12}{c^17}+{17280}{a^25}{b^12}{c^14}+{21504}{a^24}{b^18}{c^12}+{52224}{a^24}{b^17}{c^13}+{88320}{a^24}{b^16}{c^14}+{104960}{a^24}{b^15}{c^15}+{40320}{a^24}{b^15}{c^12}+{88320}{a^24}{b^14}{c^16}+{63360}{a^24}{b^14}{c^13}+{52224}{a^24}{b^13}{c^17}+{63360}{a^24}{b^13}{c^14}+{21504}{a^24}{b^12}{c^18}+{40320}{a^24}{b^12}{c^15}+{8640}{a^24}{b^12}{c^12}+{29184}{a^23}{b^19}{c^12}+{76800}{a^23}{b^18}{c^13}+{144384}{a^23}{b^17}{c^14}+{192000}{a^23}{b^16}{c^15}+{74880}{a^23}{b^16}{c^12}+{192000}{a^23}{b^15}{c^16}+{138240}{a^23}{b^15}{c^13}+{144384}{a^23}{b^14}{c^17}+{172800}{a^23}{b^14}{c^14}+{76800}{a^23}{b^13}{c^18}+{138240}{a^23}{b^13}{c^15}+{34560}{a^23}{b^13}{c^12}+{29184}{a^23}{b^12}{c^19}+{74880}{a^23}{b^12}{c^16}+{34560}{a^23}{b^12}{c^13}+{34944}{a^22}{b^20}{c^12}+{98304}{a^22}{b^19}{c^13}+{201984}{a^22}{b^18}{c^14}+{297984}{a^22}{b^17}{c^15}+{116352}{a^22}{b^17}{c^12}+{334080}{a^22}{b^16}{c^16}+{236160}{a^22}{b^16}{c^13}+{297984}{a^22}{b^15}{c^17}+{357120}{a^22}{b^15}{c^14}+{201984}{a^22}{b^14}{c^18}+{357120}{a^22}{b^14}{c^15}+{86400}{a^22}{b^14}{c^12}+{98304}{a^22}{b^13}{c^19}+{236160}{a^22}{b^13}{c^16}+{103680}{a^22}{b^13}{c^13}+{34944}{a^22}{b^12}{c^20}+{116352}{a^22}{b^12}{c^17}+{86400}{a^22}{b^12}{c^14}+{37120}{a^21}{b^21}{c^12}+{111360}{a^21}{b^20}{c^13}+{245760}{a^21}{b^19}{c^14}+{394240}{a^21}{b^18}{c^15}+{155520}{a^21}{b^18}{c^12}+{491520}{a^21}{b^17}{c^16}+{345600}{a^21}{b^17}{c^13}+{491520}{a^21}{b^16}{c^17}+{581760}{a^21}{b^16}{c^14}+{394240}{a^21}{b^15}{c^18}+{691200}{a^21}{b^15}{c^15}+{172800}{a^21}{b^15}{c^12}+{245760}{a^21}{b^14}{c^19}+{581760}{a^21}{b^14}{c^16}+{241920}{a^21}{b^14}{c^13}+{111360}{a^21}{b^13}{c^20}+{345600}{a^21}{b^13}{c^17}+{241920}{a^21}{b^13}{c^14}+{37120}{a^21}{b^12}{c^21}+{155520}{a^21}{b^12}{c^18}+{172800}{a^21}{b^12}{c^15}+{34560}{a^21}{b^12}{c^12}+{34944}{a^20}{b^22}{c^12}+{111360}{a^20}{b^21}{c^13}+{263040}{a^20}{b^20}{c^14}+{453120}{a^20}{b^19}{c^15}+{178560}{a^20}{b^19}{c^12}+{614400}{a^20}{b^18}{c^16}+{432000}{a^20}{b^18}{c^13}+{683520}{a^20}{b^17}{c^17}+{812160}{a^20}{b^17}{c^14}+{614400}{a^20}{b^16}{c^18}+{1065600}{a^20}{b^16}{c^15}+{267840}{a^20}{b^16}{c^12}+{453120}{a^20}{b^15}{c^19}+{1065600}{a^20}{b^15}{c^16}+{449280}{a^20}{b^15}{c^13}+{263040}{a^20}{b^14}{c^20}+{812160}{a^20}{b^14}{c^17}+{570240}{a^20}{b^14}{c^14}+{111360}{a^20}{b^13}{c^21}+{432000}{a^20}{b^13}{c^18}+{449280}{a^20}{b^13}{c^15}+{103680}{a^20}{b^13}{c^12}+{34944}{a^20}{b^12}{c^22}+{178560}{a^20}{b^12}{c^19}+{267840}{a^20}{b^12}{c^16}+{103680}{a^20}{b^12}{c^13}+{29184}{a^19}{b^23}{c^12}+{98304}{a^19}{b^22}{c^13}+{245760}{a^19}{b^21}{c^14}+{453120}{a^19}{b^20}{c^15}+{178560}{a^19}{b^20}{c^12}+{660480}{a^19}{b^19}{c^16}+{460800}{a^19}{b^19}{c^13}+{798720}{a^19}{b^18}{c^17}+{944640}{a^19}{b^18}{c^14}+{798720}{a^19}{b^17}{c^18}+{1382400}{a^19}{b^17}{c^15}+{345600}{a^19}{b^17}{c^12}+{660480}{a^19}{b^16}{c^19}+{1532160}{a^19}{b^16}{c^16}+{622080}{a^19}{b^16}{c^13}+{453120}{a^19}{b^15}{c^20}+{1382400}{a^19}{b^15}{c^17}+{967680}{a^19}{b^15}{c^14}+{245760}{a^19}{b^14}{c^21}+{944640}{a^19}{b^14}{c^18}+{967680}{a^19}{b^14}{c^15}+{207360}{a^19}{b^14}{c^12}+{98304}{a^19}{b^13}{c^22}+{460800}{a^19}{b^13}{c^19}+{622080}{a^19}{b^13}{c^16}+{207360}{a^19}{b^13}{c^13}+{29184}{a^19}{b^12}{c^23}+{178560}{a^19}{b^12}{c^20}+{345600}{a^19}{b^12}{c^17}+{207360}{a^19}{b^12}{c^14}+{21504}{a^18}{b^24}{c^12}+{76800}{a^18}{b^23}{c^13}+{201984}{a^18}{b^22}{c^14}+{394240}{a^18}{b^21}{c^15}+{155520}{a^18}{b^21}{c^12}+{614400}{a^18}{b^20}{c^16}+{432000}{a^18}{b^20}{c^13}+{798720}{a^18}{b^19}{c^17}+{944640}{a^18}{b^19}{c^14}+{867840}{a^18}{b^18}{c^18}+{1497600}{a^18}{b^18}{c^15}+{380160}{a^18}{b^18}{c^12}+{798720}{a^18}{b^17}{c^19}+{1854720}{a^18}{b^17}{c^16}+{760320}{a^18}{b^17}{c^13}+{614400}{a^18}{b^16}{c^20}+{1854720}{a^18}{b^16}{c^17}+{1278720}{a^18}{b^16}{c^14}+{394240}{a^18}{b^15}{c^21}+{1497600}{a^18}{b^15}{c^18}+{1520640}{a^18}{b^15}{c^15}+{345600}{a^18}{b^15}{c^12}+{201984}{a^18}{b^14}{c^22}+{944640}{a^18}{b^14}{c^19}+{1278720}{a^18}{b^14}{c^16}+{414720}{a^18}{b^14}{c^13}+{76800}{a^18}{b^13}{c^23}+{432000}{a^18}{b^13}{c^20}+{760320}{a^18}{b^13}{c^17}+{414720}{a^18}{b^13}{c^14}+{21504}{a^18}{b^12}{c^24}+{155520}{a^18}{b^12}{c^21}+{380160}{a^18}{b^12}{c^18}+{345600}{a^18}{b^12}{c^15}+{77760}{a^18}{b^12}{c^12}+{13824}{a^17}{b^25}{c^12}+{52224}{a^17}{b^24}{c^13}+{144384}{a^17}{b^23}{c^14}+{297984}{a^17}{b^22}{c^15}+{116352}{a^17}{b^22}{c^12}+{491520}{a^17}{b^21}{c^16}+{345600}{a^17}{b^21}{c^13}+{683520}{a^17}{b^20}{c^17}+{812160}{a^17}{b^20}{c^14}+{798720}{a^17}{b^19}{c^18}+{1382400}{a^17}{b^19}{c^15}+{345600}{a^17}{b^19}{c^12}+{798720}{a^17}{b^18}{c^19}+{1854720}{a^17}{b^18}{c^16}+{760320}{a^17}{b^18}{c^13}+{683520}{a^17}{b^17}{c^20}+{2073600}{a^17}{b^17}{c^17}+{1451520}{a^17}{b^17}{c^14}+{491520}{a^17}{b^16}{c^21}+{1854720}{a^17}{b^16}{c^18}+{1866240}{a^17}{b^16}{c^15}+{414720}{a^17}{b^16}{c^12}+{297984}{a^17}{b^15}{c^22}+{1382400}{a^17}{b^15}{c^19}+{1866240}{a^17}{b^15}{c^16}+{622080}{a^17}{b^15}{c^13}+{144384}{a^17}{b^14}{c^23}+{812160}{a^17}{b^14}{c^20}+{1451520}{a^17}{b^14}{c^17}+{829440}{a^17}{b^14}{c^14}+{52224}{a^17}{b^13}{c^24}+{345600}{a^17}{b^13}{c^21}+{760320}{a^17}{b^13}{c^18}+{622080}{a^17}{b^13}{c^15}+{155520}{a^17}{b^13}{c^12}+{13824}{a^17}{b^12}{c^25}+{116352}{a^17}{b^12}{c^22}+{345600}{a^17}{b^12}{c^19}+{414720}{a^17}{b^12}{c^16}+{155520}{a^17}{b^12}{c^13}+{7680}{a^16}{b^26}{c^12}+{30720}{a^16}{b^25}{c^13}+{88320}{a^16}{b^24}{c^14}+{192000}{a^16}{b^23}{c^15}+{74880}{a^16}{b^23}{c^12}+{334080}{a^16}{b^22}{c^16}+{236160}{a^16}{b^22}{c^13}+{491520}{a^16}{b^21}{c^17}+{581760}{a^16}{b^21}{c^14}+{614400}{a^16}{b^20}{c^18}+{1065600}{a^16}{b^20}{c^15}+{267840}{a^16}{b^20}{c^12}+{660480}{a^16}{b^19}{c^19}+{1532160}{a^16}{b^19}{c^16}+{622080}{a^16}{b^19}{c^13}+{614400}{a^16}{b^18}{c^20}+{1854720}{a^16}{b^18}{c^17}+{1278720}{a^16}{b^18}{c^14}+{491520}{a^16}{b^17}{c^21}+{1854720}{a^16}{b^17}{c^18}+{1866240}{a^16}{b^17}{c^15}+{414720}{a^16}{b^17}{c^12}+{334080}{a^16}{b^16}{c^22}+{1532160}{a^16}{b^16}{c^19}+{2021760}{a^16}{b^16}{c^16}+{622080}{a^16}{b^16}{c^13}+{192000}{a^16}{b^15}{c^23}+{1065600}{a^16}{b^15}{c^20}+{1866240}{a^16}{b^15}{c^17}+{1036800}{a^16}{b^15}{c^14}+{88320}{a^16}{b^14}{c^24}+{581760}{a^16}{b^14}{c^21}+{1278720}{a^16}{b^14}{c^18}+{1036800}{a^16}{b^14}{c^15}+{233280}{a^16}{b^14}{c^12}+{30720}{a^16}{b^13}{c^25}+{236160}{a^16}{b^13}{c^22}+{622080}{a^16}{b^13}{c^19}+{622080}{a^16}{b^13}{c^16}+{155520}{a^16}{b^13}{c^13}+{7680}{a^16}{b^12}{c^26}+{74880}{a^16}{b^12}{c^23}+{267840}{a^16}{b^12}{c^20}+{414720}{a^16}{b^12}{c^17}+{233280}{a^16}{b^12}{c^14}+{3584}{a^15}{b^27}{c^12}+{15360}{a^15}{b^26}{c^13}+{46080}{a^15}{b^25}{c^14}+{104960}{a^15}{b^24}{c^15}+{40320}{a^15}{b^24}{c^12}+{192000}{a^15}{b^23}{c^16}+{138240}{a^15}{b^23}{c^13}+{297984}{a^15}{b^22}{c^17}+{357120}{a^15}{b^22}{c^14}+{394240}{a^15}{b^21}{c^18}+{691200}{a^15}{b^21}{c^15}+{172800}{a^15}{b^21}{c^12}+{453120}{a^15}{b^20}{c^19}+{1065600}{a^15}{b^20}{c^16}+{449280}{a^15}{b^20}{c^13}+{453120}{a^15}{b^19}{c^20}+{1382400}{a^15}{b^19}{c^17}+{967680}{a^15}{b^19}{c^14}+{394240}{a^15}{b^18}{c^21}+{1497600}{a^15}{b^18}{c^18}+{1520640}{a^15}{b^18}{c^15}+{345600}{a^15}{b^18}{c^12}+{297984}{a^15}{b^17}{c^22}+{1382400}{a^15}{b^17}{c^19}+{1866240}{a^15}{b^17}{c^16}+{622080}{a^15}{b^17}{c^13}+{192000}{a^15}{b^16}{c^23}+{1065600}{a^15}{b^16}{c^20}+{1866240}{a^15}{b^16}{c^17}+{1036800}{a^15}{b^16}{c^14}+{104960}{a^15}{b^15}{c^24}+{691200}{a^15}{b^15}{c^21}+{1520640}{a^15}{b^15}{c^18}+{1244160}{a^15}{b^15}{c^15}+{311040}{a^15}{b^15}{c^12}+{46080}{a^15}{b^14}{c^25}+{357120}{a^15}{b^14}{c^22}+{967680}{a^15}{b^14}{c^19}+{1036800}{a^15}{b^14}{c^16}+{311040}{a^15}{b^14}{c^13}+{15360}{a^15}{b^13}{c^26}+{138240}{a^15}{b^13}{c^23}+{449280}{a^15}{b^13}{c^20}+{622080}{a^15}{b^13}{c^17}+{311040}{a^15}{b^13}{c^14}+{3584}{a^15}{b^12}{c^27}+{40320}{a^15}{b^12}{c^24}+{172800}{a^15}{b^12}{c^21}+{345600}{a^15}{b^12}{c^18}+{311040}{a^15}{b^12}{c^15}+{93312}{a^15}{b^12}{c^12}+{1344}{a^14}{b^28}{c^12}+{6144}{a^14}{b^27}{c^13}+{19200}{a^14}{b^26}{c^14}+{46080}{a^14}{b^25}{c^15}+{17280}{a^14}{b^25}{c^12}+{88320}{a^14}{b^24}{c^16}+{63360}{a^14}{b^24}{c^13}+{144384}{a^14}{b^23}{c^17}+{172800}{a^14}{b^23}{c^14}+{201984}{a^14}{b^22}{c^18}+{357120}{a^14}{b^22}{c^15}+{86400}{a^14}{b^22}{c^12}+{245760}{a^14}{b^21}{c^19}+{581760}{a^14}{b^21}{c^16}+{241920}{a^14}{b^21}{c^13}+{263040}{a^14}{b^20}{c^20}+{812160}{a^14}{b^20}{c^17}+{570240}{a^14}{b^20}{c^14}+{245760}{a^14}{b^19}{c^21}+{944640}{a^14}{b^19}{c^18}+{967680}{a^14}{b^19}{c^15}+{207360}{a^14}{b^19}{c^12}+{201984}{a^14}{b^18}{c^22}+{944640}{a^14}{b^18}{c^19}+{1278720}{a^14}{b^18}{c^16}+{414720}{a^14}{b^18}{c^13}+{144384}{a^14}{b^17}{c^23}+{812160}{a^14}{b^17}{c^20}+{1451520}{a^14}{b^17}{c^17}+{829440}{a^14}{b^17}{c^14}+{88320}{a^14}{b^16}{c^24}+{581760}{a^14}{b^16}{c^21}+{1278720}{a^14}{b^16}{c^18}+{1036800}{a^14}{b^16}{c^15}+{233280}{a^14}{b^16}{c^12}+{46080}{a^14}{b^15}{c^25}+{357120}{a^14}{b^15}{c^22}+{967680}{a^14}{b^15}{c^19}+{1036800}{a^14}{b^15}{c^16}+{311040}{a^14}{b^15}{c^13}+{19200}{a^14}{b^14}{c^26}+{172800}{a^14}{b^14}{c^23}+{570240}{a^14}{b^14}{c^20}+{829440}{a^14}{b^14}{c^17}+{466560}{a^14}{b^14}{c^14}+{6144}{a^14}{b^13}{c^27}+{63360}{a^14}{b^13}{c^24}+{241920}{a^14}{b^13}{c^21}+{414720}{a^14}{b^13}{c^18}+{311040}{a^14}{b^13}{c^15}+{93312}{a^14}{b^13}{c^12}+{1344}{a^14}{b^12}{c^28}+{17280}{a^14}{b^12}{c^25}+{86400}{a^14}{b^12}{c^22}+{207360}{a^14}{b^12}{c^19}+{233280}{a^14}{b^12}{c^16}+{93312}{a^14}{b^12}{c^13}+{384}{a^13}{b^29}{c^12}+{1920}{a^13}{b^28}{c^13}+{6144}{a^13}{b^27}{c^14}+{15360}{a^13}{b^26}{c^15}+{5760}{a^13}{b^26}{c^12}+{30720}{a^13}{b^25}{c^16}+{23040}{a^13}{b^25}{c^13}+{52224}{a^13}{b^24}{c^17}+{63360}{a^13}{b^24}{c^14}+{76800}{a^13}{b^23}{c^18}+{138240}{a^13}{b^23}{c^15}+{34560}{a^13}{b^23}{c^12}+{98304}{a^13}{b^22}{c^19}+{236160}{a^13}{b^22}{c^16}+{103680}{a^13}{b^22}{c^13}+{111360}{a^13}{b^21}{c^20}+{345600}{a^13}{b^21}{c^17}+{241920}{a^13}{b^21}{c^14}+{111360}{a^13}{b^20}{c^21}+{432000}{a^13}{b^20}{c^18}+{449280}{a^13}{b^20}{c^15}+{103680}{a^13}{b^20}{c^12}+{98304}{a^13}{b^19}{c^22}+{460800}{a^13}{b^19}{c^19}+{622080}{a^13}{b^19}{c^16}+{207360}{a^13}{b^19}{c^13}+{76800}{a^13}{b^18}{c^23}+{432000}{a^13}{b^18}{c^20}+{760320}{a^13}{b^18}{c^17}+{414720}{a^13}{b^18}{c^14}+{52224}{a^13}{b^17}{c^24}+{345600}{a^13}{b^17}{c^21}+{760320}{a^13}{b^17}{c^18}+{622080}{a^13}{b^17}{c^15}+{155520}{a^13}{b^17}{c^12}+{30720}{a^13}{b^16}{c^25}+{236160}{a^13}{b^16}{c^22}+{622080}{a^13}{b^16}{c^19}+{622080}{a^13}{b^16}{c^16}+{155520}{a^13}{b^16}{c^13}+{15360}{a^13}{b^15}{c^26}+{138240}{a^13}{b^15}{c^23}+{449280}{a^13}{b^15}{c^20}+{622080}{a^13}{b^15}{c^17}+{311040}{a^13}{b^15}{c^14}+{6144}{a^13}{b^14}{c^27}+{63360}{a^13}{b^14}{c^24}+{241920}{a^13}{b^14}{c^21}+{414720}{a^13}{b^14}{c^18}+{311040}{a^13}{b^14}{c^15}+{93312}{a^13}{b^14}{c^12}+{1920}{a^13}{b^13}{c^28}+{23040}{a^13}{b^13}{c^25}+{103680}{a^13}{b^13}{c^22}+{207360}{a^13}{b^13}{c^19}+{155520}{a^13}{b^13}{c^16}+{384}{a^13}{b^12}{c^29}+{5760}{a^13}{b^12}{c^26}+{34560}{a^13}{b^12}{c^23}+{103680}{a^13}{b^12}{c^20}+{155520}{a^13}{b^12}{c^17}+{93312}{a^13}{b^12}{c^14}+{64}{a^12}{b^30}{c^12}+{384}{a^12}{b^29}{c^13}+{1344}{a^12}{b^28}{c^14}+{3584}{a^12}{b^27}{c^15}+{1152}{a^12}{b^27}{c^12}+{7680}{a^12}{b^26}{c^16}+{5760}{a^12}{b^26}{c^13}+{13824}{a^12}{b^25}{c^17}+{17280}{a^12}{b^25}{c^14}+{21504}{a^12}{b^24}{c^18}+{40320}{a^12}{b^24}{c^15}+{8640}{a^12}{b^24}{c^12}+{29184}{a^12}{b^23}{c^19}+{74880}{a^12}{b^23}{c^16}+{34560}{a^12}{b^23}{c^13}+{34944}{a^12}{b^22}{c^20}+{116352}{a^12}{b^22}{c^17}+{86400}{a^12}{b^22}{c^14}+{37120}{a^12}{b^21}{c^21}+{155520}{a^12}{b^21}{c^18}+{172800}{a^12}{b^21}{c^15}+{34560}{a^12}{b^21}{c^12}+{34944}{a^12}{b^20}{c^22}+{178560}{a^12}{b^20}{c^19}+{267840}{a^12}{b^20}{c^16}+{103680}{a^12}{b^20}{c^13}+{29184}{a^12}{b^19}{c^23}+{178560}{a^12}{b^19}{c^20}+{345600}{a^12}{b^19}{c^17}+{207360}{a^12}{b^19}{c^14}+{21504}{a^12}{b^18}{c^24}+{155520}{a^12}{b^18}{c^21}+{380160}{a^12}{b^18}{c^18}+{345600}{a^12}{b^18}{c^15}+{77760}{a^12}{b^18}{c^12}+{13824}{a^12}{b^17}{c^25}+{116352}{a^12}{b^17}{c^22}+{345600}{a^12}{b^17}{c^19}+{414720}{a^12}{b^17}{c^16}+{155520}{a^12}{b^17}{c^13}+{7680}{a^12}{b^16}{c^26}+{74880}{a^12}{b^16}{c^23}+{267840}{a^12}{b^16}{c^20}+{414720}{a^12}{b^16}{c^17}+{233280}{a^12}{b^16}{c^14}+{3584}{a^12}{b^15}{c^27}+{40320}{a^12}{b^15}{c^24}+{172800}{a^12}{b^15}{c^21}+{345600}{a^12}{b^15}{c^18}+{311040}{a^12}{b^15}{c^15}+{93312}{a^12}{b^15}{c^12}+{1344}{a^12}{b^14}{c^28}+{17280}{a^12}{b^14}{c^25}+{86400}{a^12}{b^14}{c^22}+{207360}{a^12}{b^14}{c^19}+{233280}{a^12}{b^14}{c^16}+{93312}{a^12}{b^14}{c^13}+{384}{a^12}{b^13}{c^29}+{5760}{a^12}{b^13}{c^26}+{34560}{a^12}{b^13}{c^23}+{103680}{a^12}{b^13}{c^20}+{155520}{a^12}{b^13}{c^17}+{93312}{a^12}{b^13}{c^14}+{64}{a^12}{b^12}{c^30}+{1152}{a^12}{b^12}{c^27}+{8640}{a^12}{b^12}{c^24}+{34560}{a^12}{b^12}{c^21}+{77760}{a^12}{b^12}{c^18}+{93312}{a^12}{b^12}{c^15}+{46656}{a^12}{b^12}{c^12} $